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The classical Cartan–Hadamard theorem asserts that a closed Riemannian manifold
Mn with non-positive sectional curvature has universal cover M̃n diffeomorphic to R

n,
and a by-product of the proof is that ∂∞M̃n is homeomorphic to Sn−1. We prove
analogues of these two results in the case where Mn has a non-empty totally geodesic
boundary. More precisely, if Mn

1 , Mn
2 are two negatively curved Riemannian manifolds

with non-empty totally geodesic boundary, of dimension n �= 5, we show that ∂∞M̃n
1

is homeomorphic to ∂∞M̃n
2 . We show that if Mn

1 and Mn
2 are a pair of non-positively

curved Riemannian manifolds with totally geodesic boundary (possibly empty), then the
universal covers M̃n

1 and M̃n
2 are diffeomorphic if and only if the universal covers have

the same number of boundary components. We also show that the number of boundary
components of the universal cover is either 0, 2 or ∞. As a sample application, we show
that simple, thick, negatively curved P -manifolds of dimension ≥ 6 are topologically
rigid. We include some straightforward consequences of topological rigidity (diagram
rigidity, weak co-Hopf property, and the Nielson problem).

1. Introduction

The classical Cartan–Hadamard theorem states that, if M is a simply-connected,
complete Riemannian manifold with non-positive sectional curvature, then the
exponential mapping TpM → M at the point p is a diffeomorphism from the tan-
gent space at p to the entire manifold. This result has two important consequences
which we propose to generalize in the present paper.

First of all, if Mn is a closed Riemannian manifold of non-positive sectional
curvature, then the universal cover M̃n is diffeomorphic to R

n. In particular, in
each dimension n, there is a unique smooth manifold arising as the universal cover
of such manifolds.

Secondly, if Mn is a closed Riemannian manifold of non-positive curvature, and
p ∈ M̃n is a point in the universal cover, then distinct geodesic rays emanating
from p only intersect at their common basepoint. In particular, geodesic projection
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yields a homeomorphism between the boundary at infinity ∂∞M̃n and the unit
tangent space at p, and hence one obtains that ∂∞M̃n ∼= Sn−1.

Our goal is to obtain analogues of these two results, in the situation where Mn

has non-empty, totally geodesic boundary. The second statement above is general-
ized, under a stronger curvature constraint, in the following:

Theorem 1.1. (Topological characterization of ∂∞M̃) Assume M1, M2 are a pair
of compact, negatively curved Riemannian manifolds of dimension n �= 5, with non-
empty, totally geodesic boundary. Then we have ∂∞M̃1 is homeomorphic to ∂∞M̃2,

where M̃i is the universal cover of Mi.

Note that if n = 2, then the boundaries at infinity of the M̃i are Cantor sets,
and the theorem follows from the classical fact that any two Cantor sets are home-
omorphic (Brouwer’s characterization theorem). It is relatively easy to extend the
homeomorphism between the ∂∞M̃i obtained in Theorem 1.1 to a homeomorphism
between the universal covers M̃i (an outline of this argument is given at the end of
Sec. 2). We do not provide the details for this argument, as in Sec. 3 the following
stronger result will be obtained, via different methods:

Theorem 1.2. (Smooth characterization of M̃) Assume M1,M2 are a pair of
compact, non-positively curved Riemannian manifolds with totally geodesic bound-
ary (possibly empty). Then the following two statements are equivalent :

• M̃1 is diffeomorphic to M̃2.
• M̃1 has the same number of boundary components as M̃2.

Furthermore, the possible number of boundary components of such an M̃ is either

• 0 boundary components, which is clearly equivalent to M being closed, or
• 2 boundary components, in which case the universal cover M̃ splits isometrically

as the product of a totally geodesic, codimension one submanifold with a closed
interval, or

• infinitely many boundary components, which is the generic case.

In particular, in each dimension n ≥ 2, there are up to diffeomorphism precisely
three spaces that occur as the universal cover of a compact, non-positively curved
Riemannian manifolds with totally geodesic boundary (possibly empty).

Finally, we conclude by providing the following application of Theorem 1.1 (see
Sec. 4 for definitions):

Theorem 1.3. (Topological rigidity of negatively curved P -manifolds) Let X1, X2

be a pair of simple, thick, negatively curved P -manifolds, of dimension ≥ 6. If
π1(X1) is isomorphic to π1(X2), then X1 is homeomorphic to X2.

This last result has a number of interesting consequences:

Corollary 1.1. (Diagram rigidity) Let D1,D2 be a pair of diagrams of groups,
corresponding to a pair of negatively curved, simple, thick P -manifolds of dimension
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n ≥ 6. Then lim−→D1 is isomorphic to lim−→D2 if and only if the two diagrams are
isomorphic.

Corollary 1.2. (Weak Co-Hopf property) Let X be a simple, thick, negatively
curved P -manifold of dimension n ≥ 6, and assume that at least one of the chambers
has a nonzero characteristic number. Then Γ = π1(X) is weakly co-Hopfian, i.e.
every injection Γ ↪→ Γ with image of finite index is in fact an isomorphism.

Corollary 1.3. (Nielson realization problem) Let X be a simple, thick, negatively
curved P -manifold of dimension n ≥ 6, and Γ = π1(X). Then the canonical map
Homeo(X) → Out(Γ) is surjective.

We now outline the layout of this paper. In Sec. 2, we will give a proof of
Theorem 1.1. The argument relies heavily on a characterization of n-dimensional
Sierpinski curves (n �= 4) due to Cannon [4]. The dimension restriction in Theo-
rem 1.1 arises from the corresponding dimension restriction in Cannon’s work. We
note that Ruane [17] used Cannon’s theorem in a similar manner to characterize
CAT(0)-boundaries for non-uniform lattices Γ ≤ SO(n, 1) acting co-compactly on
a Γ-equivariantly truncated H

n.
In Sec. 3, we will give a proof of Theorem 1.2. The argument relating the diffeo-

morphism type of the universal cover with the number of boundary components is
Morse theoretic in nature. The analysis of the possible number of boundary com-
ponents relies on some elementary geometric properties of non-positively curved
spaces.

Finally in Sec. 4, we will discuss the proof of Theorem 1.3, as well as the proofs of
the three corollaries. The arguments for these follow almost verbatim from previous
results of the author [12, 13]. As such, we content ourselves with outlining the
arguments from our previous paper, detailing how our Theorem 1.1 allows us to
extend our previous results to the present setting.

2. Characterizations of Boundaries at Infinity

We now proceed to prove Theorem 1.1 from the Introduction. So let M1,M2 be a
pair of compact, negatively curved manifolds of dimension n �= 5, with non-empty
totally geodesic boundary. We want to establish that ∂∞M̃1 is homeomorphic to
∂∞M̃2. In order to do this, we will make use of the characterization of Sierpinski
curves due to Cannon [4] (generalizing a classic result of Whyburn [21] in dimension
n = 2). We first start with a definition:

Definition 2.1. Let {Ui} be a countable collection of pairwise disjoint subsets of
Sn satisfying the following four conditions:

(1) the collection {Ui} forms a null sequence, i.e. lim{diam(Ui)} = 0,
(2) Sn − Ui is an n-cell for each i,
(3) Cl(Ui) ∩ Cl(Uj) = ∅ for each i �= j (Cl denotes closure),
(4) Cl(

⋃
Ui) = Sn.
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Then we call the complement Sn − ⋃
Ui an (n − 1)-dimensional Sierpinski curve

(abbreviated to S-curve).

Theorem 2.1. (Cannon, [4]) Let X,Y be an arbitrary pair of (n− 1)-dimensional
S-curves (n �= 4). Then we have:

• X is homeomorphic to Y,
• if i : X → Sn is an arbitrary embedding, then i(X) ⊂ Sn is an (n−1)-dimensional

S-curve,
• if h : X → Y is an arbitrary homeomorphism, then h extends to a homeomor-

phism of the ambient n-dimensional spheres.

The scheme of the proof of Theorem 1.1 is now clear: considering the double
DMi of the manifold Mi across its boundary, we can view M̃i as a totally geodesic
subset of D̃M i, and hence ∂∞M̃i as an embedded subset of ∂∞D̃M i

∼= Sn−1.
If we can establish that ∂∞M̃i is an (n − 2)-dimensional S-curve, Cannon’s
theorem will immediately imply that ∂∞M̃1 is homeomorphic to ∂∞M̃2. We
now proceed to verify the four conditions of an (n − 2)-dimensional S-curve for
∂∞M̃ ⊂ ∂∞D̃M ∼= Sn−1.

Let us first fix some notation: the collection {Ui} will be the connected com-
ponents of ∂∞D̃M − ∂∞M̃ inside ∂∞D̃M ∼= Sn−1. We will denote by {Yi} the
connected components of D̃M − M̃ . Note that each Cl(Yi) intersects M̃ along
a boundary component, which is a totally geodesic codimension one submanifold
of D̃M . We will denote by Zi ⊂ ∂M̃ the boundary component corresponding to
Yi ⊂ D̃M − M̃ . Finally, we observe that each Ui can be identified with a corre-
sponding ∂∞Yi − ∂∞Zi, for some suitable component Yi.

Condition 1. The collection {Ui} forms a null sequence.

Proof. At the cost of rescaling the metric on DM , we may assume that the sec-
tional curvature is bounded above by −1, and hence that D̃M is a CAT (−1) space.
In this situation, Bourdon [2] defined a metric on ∂∞D̃M inducing the standard
topology on ∂∞D̃M ∼= Sn−1. The metric is given by:

d∞(p, q) = e−d(∗,γpq),

where γpq is the unique geodesic joining the points p, q ∈ ∂∞D̃M , ∗ ∈ DM a chosen
basepoint (and d denotes the distance inside D̃M). Note that different choices of
basepoints result in metrics which are Lipschitz equivalent. For convenience, we will
pick the basepoint ∗ to lie in the interior of the lift M̃ .

Now consider one of the components Ui, and let us try to estimate diam(Ui).
Note that given any two points p, q ∈ Cl(Ui), we have that the geodesic γpq ⊂
Cl(Yi), where Yi is the component corresponding to Ui. In particular, we see that
d(∗, γpq) ≥ d(∗, Zi), and hence that for any p, q ∈ Cl(Ui) we have the upper bound:

d∞(p, q) = e−d(∗,γpq) ≤ e−d(∗,Zi).
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Since diam(Ui) is the supremum of d∞(p, q), where p, q ∈ Cl(Ui), the above
bound yields diam(Ui) ≤ e−d(∗,Zi). On the other hand, since M̃ is the universal
cover of a compact negatively curved manifold with non-empty boundary, we have
that lim{d(∗, Zi)} = ∞, where Zi ranges over the boundary components of M̃ .
This implies that the collection {Ui} forms a null sequence in ∂∞D̃M ∼= Sn−1,
as desired.

Condition 2. Sn−1 − Ui is an (n− 1)-cell for each i.

Proof. Recall that there exists a homeomorphism πx : Sn−1 ∼= ∂∞D̃M →
T 1
x D̃M

∼= Sn−1, obtained by mapping a point p ∈ ∂∞D̃M to the unit vector
γ̇xp(0), where γxp is the unit speed geodesic ray originating from x, in the direction
p ∈ ∂∞D̃M . Now let Ui be given, and pick x to lie on the corresponding Zi. Note
that under the homeomorphism πx, we have that ∂∞Zi maps homeomorphically
to a totally geodesic Sn−2 ⊂ Sn−1 ∼= T 1

x D̃M , while the subset Ui maps homeo-
morphically to one of the open hemispheres determined by πx(∂∞Zi). This forces
∂∞D̃M−Ui to map homeomorphically to one of the closed hemispheres determined
by πx(∂∞Zi), and hence must be an (n− 1)-cell, as desired.

Condition 3. Cl(Ui) ∩ Cl(Uj) = ∅ for all i �= j.

Proof. Note that by definition we have that Ui ∩ Uj = ∅, and that Cl(Ui) =
Ui∪∂∞Zi, Cl(Uj) = Uj∪∂∞Zj. Hence it is sufficient to show that ∂∞Zi∩∂∞Zj = ∅
for i �= j (since these are codimension one spheres in Sn−1 ∼= ∂∞D̃M , with the Ui,
Uj connected components of the respective complements). But a pair of distinct
boundary components of M̃ , the universal cover of a compact negatively curved
manifold with non-empty totally geodesic boundary, must diverge exponentially
(with growth rate bounded below in terms of the upper bound on sectional curva-
ture). In particular, no geodesic ray in Zi is within bounded Hausdorff distance of
a geodesic ray in Zj , and hence the boundaries at infinity are pairwise disjoint, as
desired.

Condition 4. Cl(
⋃
Ui) = Sn−1.

Proof. Fix a point x ∈ M̃ , and consider the homeomorphism πx : Sn−1 ∼=
∂∞D̃M → T 1

x D̃M
∼= Sn−1. We will show that every point in T 1

x D̃M
∼= Sn−1

can be approximated by a sequence of points in πx(Ui). This will imply that
T 1
x D̃M = Cl(

⋃
πx(Ui)), and since πx is a homeomorphism, Condition 4 will follow.

Now if p ∈ T 1
x D̃M lies in one of the πx(Ui), we are done, so let us assume that

p ∈ T 1
x D̃M −⋃

πx(Ui). Let γ be a unit speed geodesic ray originating from x with
tangent vector p at the point x. Note that we have that γ ⊂ M̃ ⊂ D̃M , since we
are assuming p ∈ T 1

x D̃M −⋃
πx(Ui). Now observe that M̃ is the universal cover of

a compact negatively curved manifold with non-empty totally geodesic boundary,
and hence there exists a constant K with the property that every point in M̃ is
within distance K of ∂M̃ =

⋃
Zi (for instance take K = diam(M)).
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So for each integer k ∈ N, we can find a point yk ∈ ∂M̃ satisfying d(γ(k), yk) ≤
K. If ηk is the geodesic ray originating from x and passing through yk, we have
that ηk(∞) ∈ Uik , where Zik is the component of ∂M̃ containing the point yk.
This implies that η̇k(0) ∈ T 1

x D̃M lies in the corresponding πx(Uik), i.e. that the
sequence of vectors {η̇k(0)} ⊂ T 1

x D̃M lies in the set
⋃
πx(Ui). We are left with

establishing that lim{η̇k(0)} = p. To see this, we need to estimate the angle between
the geodesics ηk and the geodesic γ. But this is easy to do: consider the geodesic
triangle with vertices (x, γ(k), yk), and note that d(x, γ(k)) = k, while d(γ(k), yk) ≤
K. Applying the Alexandrov–Toponogov triangle comparison theorem, we see that
the angle ∠(η̇k(0), γ̇(0)) is bounded above by the angle of a comparison triangle in
H

2 (recall that we assumed the metrics have been scaled to have upper bound −1
on the sectional curvature). But an easy calculation in hyperbolic geometry shows
that if one has a sequence of triangles in H

2 of the form (Ak, Bk, Ck) with the
property that d(Ak, Bk) = k and d(Bk, Ck) ≤ K, then the angle at the vertex Ak
tends to zero as k tends to infinity. This implies that lim{∠(η̇k(0), γ̇(0))} = 0, and
hence completes the proof of Condition 4.

Appealing to Cannon’s theorem now immediately yields Theorem 1.1: if M1,M2

are a pair of compact, n-dimensional (n �= 5), negatively curved manifolds with
non-empty, totally geodesic boundary, then ∂∞M̃1, ∂

∞M̃2 are a pair of (n − 2)-
dimensional S-curves, and hence are homeomorphic to each other.

Remark. We point out that Theorem 1.1 can be used to give a proof of a weak
form of Theorem 1.2 under some stricter dimension and curvature hypotheses. The
rough outline of such an argument is as follows: taking two such manifolds M1,M2,
Theorem 1.1 tells us that ∂∞M̃1 is homeomorphic to ∂∞M̃2. Fixing a pair of
points pi ∈ Int(M̃i), one can use the homeomorphism between the pair of ∂∞M̃i

to “radially extend” to a homeomorphism between a pair of subsets Ci ⊂ M̃i,
each of which is homeomorphic to the cone over the corresponding ∂∞M̃i (and
where each pi is the cone point of the corresponding Ci). Now when n ≥ 3, the
complements of Ci in M̃i can be easily seen to decompose into countably many
connected components, one for each component of the boundary ∂M̃i. Furthermore,
the closure of each of these components can be shown to be homeomorphic to
R
n−1 × [0, 1], with the subset R

n−1 × {1} contained in Ci, and the subset R
n−1 ×

{0} corresponding to a component of ∂M̃i. With some work, one can see that
the complements of C1 in M̃1 attach to C1 in precisely the same manner as the
complements of C2 attach to M̃2, allowing the homeomorphism between the Ci to
extend to a homeomorphism between the M̃i. Note that the argument sketched out
here can only a priori give homeomorphism information (though see the remark at
the end of Sec. 3.1), since it is obtained by “extending inwards” the homeomorphism
between the boundaries at infinity (which are fairly pathological spaces). We omit
the details of this argument, since the considerably stronger Theorem 1.2 will be
established (via completely different methods) in the next section.
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3. Generalized Cartan–Hadamard Theorem

In this section, we provide a proof of Theorem 1.2. Let us first recall that there are
two components to Theorem 1.2:

• a characterization of the diffeomorphism type of M̃ in terms of the number of
boundary components of M̃ , and

• a count of the possible number of boundary components of M̃

where M̃ is the universal cover of a compact Riemannian manifold M of non-
positive curvature, with totally geodesic boundary. Note that the case where the
manifold M is closed is classical, hence we will assume throughout this section that
∂M �= ∅. We argue each of the two portions of Theorem 1.2 separately, as they
require drastically different techniques.

3.1. Characterization of universal covers

In order to establish the characterization of universal covers in terms of the number
of boundary components, we make use of Morse theory. This approach is philo-
sophically very different from the argument sketched out in the remark at the end
of the previous section, since instead of “extending inwards” from the boundary at
infinity, we will be “growing outwards” our diffeomorphism.

We first observe that, since M̃ is a manifold with boundary, it has a canonical
stratification with two strata: the interior Int(M̃) of M̃ , and the boundary ∂M̃ .
In addition, since the boundary ∂M is totally geodesic inside M , one can embed
M as a totally geodesic codimension zero submanifold of the double DM . Lifting,
we have a natural totally geodesic embedding of the universal cover M̃ inside the
Riemannian manifold D̃M (which we know is diffeomorphic to R

n). Our plan is
now to use a suitable version of Morse theory to analyze the topology of M̃ . The
function we will use will be the square of the distance to a suitable point p ∈ Int(M̃).
The next two Claims establish the existence of a suitable point p.

Claim 1. There exists a point p ∈ Int(M̃) such that for every pair of distinct
boundary components N,N ′ ⊂ ∂M̃, we have that d(p,N) �= d(p,N ′).

Proof. (Claim 1) To see this, we first note that given any pair N,N ′ of distinct
boundary components, the set of points q ∈ D̃M satisfying d(q,N) = d(q,N ′) is a
codimension one submanifold of D̃M . Indeed, we can consider the smooth function
φ : D̃M → R given by φ(x) := d(x,N)2 − d(x,N ′)2, and observe that the set of
points we are interested in is just the pre-image set φ−1(0). Hence to show that this
is a submanifold, we just need to establish that 0 is a regular value of the smooth
map φ. So let x ∈ D̃M satisfy φ(x) = 0, and observe that, since N,N ′ are totally
geodesic submanifolds and M̃ is simply connected of non-positive curvature, there
exists a unique pair of minimal length geodesic segments γ, γ′ emanating from x,
and terminating on N,N ′ respectively.
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Now consider the unit tangent vectors v, v′ ∈ TxD̃M tangent to γ, γ′. From the
explicit form of φ, we observe that the corresponding differential dφ : TxD̃M →
T0R ∼= R is given by the concrete expression:

dφ(w) = 2D · 〈w, v − v′〉x,
where w ∈ TxD̃M is arbitrary,D is the distance from x to N , and the inner product
is taken with respect to the Riemannian metric on M̃ . Finally, we observe that if
x was not a regular point for the map φ, then dφ would have to be identically zero
on TxD̃M . This would imply that v− v′ = 0, and hence that v = v′, which in turn
would force γ = γ′. But this contradicts the fact that N,N ′ were distinct boundary
components.

Now the inverse function theorem implies that the set of points φ−1(0) we are
interested in is in fact a smooth submanifold of codimension one. Finally, since
there are only countably many pairs of boundary components, one sees that the set
of points E where some d(q,N) = d(q,N ′) lies on a countable union of codimension
one submanifolds, and hence has measure zero in D̃M . Since Int(M̃) ia an open set
in D̃M , this implies that there exists a point in p ∈ Int(M̃)−E, and it is immediate
from the definition of E that the point p has the desired property.

Claim 2. For the point p chosen above, the set of distances from p to the connected
components of ∂M̃ forms a discrete subset of R

+.

Proof. (Claim 2) Let us assume that the set of distances from p to the connected
components of M̃ have an accumulation point, and argue by contradiction. Pick r >
0 such that the metric ball Bp(r) intersects infinitely many boundary components
{Ni}. Now for each Ni, define the subset Ui to be the set of directions, in T 1

p (M̃),
corresponding to geodesic segments joining p to points in Ni. Note that each Ui ⊂
T 1
p M̃ is (topologically) an open ball inside T 1

p M̃
∼= Sn−1, and that the collection of

subsets {Ui} are pairwise disjoint in T 1
p M̃ . We now argue that each Ui contains a

metric ball Vi of radius a fixed δ > 0, which will obviously give us a contradiction,
as the entire sphere T 1

p M̃ has finite volume, and hence can only contain finitely
many such pairwise disjoint metric balls.

To establish this result, we first note that every Ui contains a distinguished
point xi, consisting of the direction corresponding to the unique minimal length
geodesic joining p to the corresponding Ni. We will use the point xi as the center
for our metric balls Vi. Now note that each of the open sets Ui can be uniquely
identified by its boundary ∂Ui ⊂ T 1

p M̃ (homeomorphic to Sn−2), hence it is suffi-
cient for us to establish that the distance from xi to ∂Ui is uniformly bounded from
below. Observe that the distance in the unit tangent space T 1

p M̃ is given by the
angle between the corresponding vectors. To bound this angle from below, we make
use of the Alexander–Toponogov triangle comparison theorem: a point in ∂Ui is a
limit of points inside Ui, corresponding to a sequence of points {yk} in Ni whose
distance from the point xi tends to infinity. Considering the sequence of triangles
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with vertices {p, xi, yk} (corresponding to the sequence of points {yk}) one can use
the lower bound κ on sectional curvatures (recall that M̃ is the universal cover of a
compact manifold M) to construct a sequence of comparison triangles {p̄, x̄i, ȳk} in
H

2
κ, the constant κ-curvature space. These comparison triangles are built to have

dH2
κ
(p̄, x̄i) = d(p, xi), dH2

κ
(x̄i, ȳk) = d(xi, yk), and ∠H2

κ
(x̄i) = ∠(xi)π/2. The trian-

gle comparison theorem tells us that the angle ∠(p) of the triangle {p, xi, yk} at
the vertex p is at least as large as the angle ∠H2

κ
(p̄) of the comparison triangle

{p̄, x̄i, ȳk} at the vertex p̄. But observe that we have dH2
κ
(p̄, x̄i) = d(p, xi) ≤ r, while

dH2
κ
(x̄i, ȳk) = d(xi, yk) → ∞ as k → ∞. A direct computation shows that for such

triangles in H
2
κ, the angles at the vertex p̄ approach a limiting value δ > 0. This

implies that each of the sets Ui contains an open metric ball, centered at xi, of
radius δ > 0, giving us the desired contradiction.

We conclude that each ball centered at p intersects only finitely many boundary
components, and hence the collection of distances from p to the boundary compo-
nents does indeed form a discrete subset in R

+.

Having established the existence of a point p as in Claim 1, we can now con-
sider the function φ : D̃M → R given by φ(−) = d2(p,−). Note that φ is a proper
function, and by the classical Cartan–Hadamard theorem is smooth on D̃M , with
a single critical point (a minimum) at p ∈ Int(M̃) ⊂ D̃M . In particular, φ defines
a proper Morse function on D̃M . Let us denote by f the restriction of φ to M̃ . We
now plan on using the function f to analyze the topology of M̃ , a non-compact
manifold with boundary. In order to do this, we will use Morse theory for manifolds
with boundary.

Let us now briefly recall the definition of a Morse function in the setting of
manifolds with boundary. Given a manifold with boundary M , embedded as a
smooth submanifold of R

N , and a smooth function φ : R
N → R, we denote by f

the restriction f := φ|M : M → R. We will denote by ∂f the further restriction of f
to the smooth submanifold ∂M ⊂ R

N . Restricting f to the interior of M , we obtain
a smooth function f◦ on a non-compact manifold Int(M) with empty boundary; let
Crit(f◦) ⊂ Int(M) denote the critical points of this function. Furthermore, we can
also consider the smooth function ∂f on ∂M ; let Crit(∂f) ⊂ ∂M denote the critical
points of this function. We now say that f is a Morse function provided that:

(1) the restriction f◦ is a Morse function on Int(M) (in the classical sense),
(2) the restriction ∂f is a Morse function on ∂M (in the classical sense), and
(3) Crit(f◦) has no accumulation points in M .

For such a Morse function f , the set of critical points of f is just the union
Crit(f) := Crit(f◦)

∐
Crit(∂f).

Our next step is to verify that the function f , obtained by restricting the function
φ(−) := d2(p,−) from D̃M ∼= R

n to M̃ , is indeed a Morse function on the manifold
with boundary M̃ . We first observe that the function φ on D̃M is Morse, and has
a unique critical point, which is a minimum occurring at p ∈ Int(M̃). In particular,
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we have that Crit(f◦) = {p}. We now need to identify the set Crit(∂f). Note that
since Crit(f◦) consists of a single point, condition (3) holds vacuously.

Claim 3. The function ∂f : ∂M̃ → R has one critical point on each component N
of ∂M̃ . Furthermore, each of these critical points is a minimum.

Proof. (Claim 3) To see this, we first observe that, since N ⊂ M̃ is a totally
geodesic submanifold, the non-positive curvature hypothesis forces the existence of
a unique point x realizing d(p, x) = d(p,N). This point will clearly be the unique
global minimum of the function f restricted to N , completing the second point of
the Claim. So we are left with arguing that f has no other critical points. This
is of course equivalent to showing that for all y �= x with y ∈ N , the restriction
f |N : N → R

+ has a nonzero gradient at the point y. But observe that the gradient
∇f |N (y) of the restricted function f |N is simply the projection of the gradient
∇f(y) of the original function f to the tangent space TyN . Hence it is sufficient
to argue that ∇f(y) fails to be perpendicular to TyN . But this is easy to do: take
the geodesic triangle {p, x, y}, and consider the comparison triangle {p̄, x̄, ȳ} in R

2.
By the Alexander–Toponogov triangle comparison theorem, we know that all the
angles in the triangle {p, x, y} must be smaller than the corresponding angles in the
triangle {p̄, x̄, ȳ}. Note that the angle at the vertex x is π/2, since x minimizes the
distance from p to N (and applying the first variation of energy formula), which
tells us that the angle at vertex x̄ is ≥ π/2. But the sum of the angles in the
Euclidean triangle {p̄, x̄, ȳ} is π, hence both the remaining angles must be < π/2.
Since the angle at y is smaller than the angle at ȳ, we immediately get that the
angle at y is likewise < π/2. Finally, we observe the initial vector of the geodesic
segment yp is a scalar multiple of the vector ∇f(y), while the initial vector of the
geodesic segment yx lies in TyN . This yields that ∇f(y) is not perpendicular to
TyN , and hence that y cannot be a critical point of f |N , as desired.

Having established that the function f is a Morse function, we now want to
use this function to understand the topology of M̃ . Note that, by the choice of the
point p, the critical values of the Morse function f form a discrete subset of R

+,
and each critical value corresponds to a unique critical point. Let us denote by M̃r

the sublevel set f−1(−∞, r]. An illustration of such a sublevel set is given in Fig. 1:
M̃ is drawn as a submanifold in D̃M , and the subset M̃R ⊂ M̃ is shaded. Note
that M̃R is naturally a manifold with corners, as well as a stratified space, with the
codimension one strata (corresponding to ∂M̃) drawn in a darker shade.

Before stating our Morse theoretic result, let us briefly elaborate on the structure
of the sublevel sets for a Morse function on a manifold with boundary. First recall
that an n-dimensional manifold with corners is a space locally modeled (in the
obvious sense) on the subspaces

R
n
k := {(x1, . . . , xn) ∈ R

n | x1 ≥ 0, . . . , xk ≥ 0} ⊂ R
n,

where 0 ≤ k ≤ n. Observe that R
n
0 is just the usual R

n, while R
n
1 is a standard half-

space. The subset of points which locally correspond to the origin in R
n
k form the



December 24, 2009 16:38 WSPC/243-JTA 00017

A Boundary Version of Cartan–Hadamard and Applications to Rigidity 441

Fig. 1. Stratified manifold with corners M̃R := f−1(−∞, R].

codimension k corner. With this convention in place, a manifold without boundary
can be viewed as a manifold with corners, where all corners are of codimension 0.
A manifold with boundary can be viewed as a manifold with corners, where all
corners are of codimension ≤ 1 (and the boundary of the manifold coresponds pre-
cisely to the one-dimensional corner). In particular, we see that in the classical
Morse theory, the generic sublevel sets of a Morse function on a manifold with
corners of codimension 0 (a manifold without boundary) naturally have the struc-
ture of a manifold with corners of codimension ≤ 1 (a manifold with boundary).
Similarly, for a Morse function on a manifold with corners of codimension ≤ 1 (a
manifold with boundary), generic sublevel sets will have a natural structure of a
manifold with corners of codimension ≤ 2. This structure can readily be seen in
Fig. 1: the illustration shows M̃R as a manifold with corners, with exactly eight
points forming the corners of codimension 2.

Note that, if we were to forget the “corner” structure, we can view the sub-
level set as a manifold with boundary. The boundary of the sublevel set M̃R =
f−1(−∞, R] naturally decomposes into two sets: the set (∂f)−1(−∞, R] ⊂ ∂M̃ ,
along with the set f−1(R). Each of these two sets are (n − 1)-dimensional man-
ifolds with boundary, and they intersect in the subset (∂f)−1(R) = ∂(f−1(R)).
Since we will be considering the sublevel sets M̃R for larger and larger values of R,
we will need to keep track of the portion of ∂M̃R that lies inside the set ∂M̃ . This
is achieved by imposing a stratification on M̃R, where the codimension one strata
is the subset (∂f)−1(−∞, R] ⊂ M̃ .

Next, let us recall the basic results concerning the topology of sublevel sets
in the classical setting of Morse functions on closed manifolds. If f : M → R

is a Morse function, and Mr denotes the sublevel set Mr = f−1(−∞, r], then
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we have:

• if the interval [a, b] contains no critical values of f , then there is a diffeomorphism
Ma

∼= Mb,
• if v is the only critical value in the interval [v−ε, v+ε], with a unique correspond-

ing critical point of index k, then Mv+ε is diffeomorphic to the space obtained
from Mv−ε by attaching a k-handle (i.e. D

k×D
n−k attached along ∂D

k×D
n−k),

with the attaching corner “smoothed out”.

For our purposes, we will need a version of Morse theory for manifolds with bound-
ary. Such a theory has been studied and developed by a variety of authors, including
Baiada-Morse [1], Hamm [8], Hamm-Le [9], Siersma [20], and of course, Goresky–
MacPherson [7]. Most of these authors have focused on applications of Morse
theoretic techniques to problems in algebraic geometry (topology of Stein spaces,
Lefschetz theorems), and as such they focus primarily on “coarse” topological data
(recognizing Betti numbers, homology, or homotopy type). In our situation, we are
seeking more refined data, as we would like to recognize the sublevel sets up to
diffeomorphism.

We were unable to locate the precise statements we needed in the literature.
However, these results seem to be well known to experts, and follow relatively
easily from the methods used in Milnor’s book [14]. For the convenience of the
reader, we provide a brief sketch of the proofs, leaving the details to the interested
reader.

Claim 4. If the interval [a, b] contains no critical values of f, then there is a
diffeomorphism of manifolds with corners M̃a

∼= M̃b, which furthermore preserves
the stratification of these two spaces.

Proof. (Claim 4) This is shown in a manner similar to the corresponding statement
in the classical setting, namely, the diffeomorphism is constructed as the time one
flow associated to a suitable vector field. In our situation, we first assert that there
exists a smooth vector field X defined on M̃b having the following four properties:

(1) X vanishes outside a compact neighborhood K of f−1[a, b], chosen so f has no
critical points on K,

(2) at all points p where X(p) �= 0, we have 〈X,∇f〉 < 0,
(3) at all points in the codimension one strata X is tangential to the strata,
(4) for the associated flow ϕt : M̃b → M̃b, one has that the time one map takes

ϕ1(f−1(b)) ⊂ f−1(a).

To see this, we first recall that in the classical setting, an analogous vector
field is constructed by taking the negative gradient vector field of the function f ,
multiplying it by a positive function which vanishes outside of K, and then suitably
renormalizing (see e.g. [14, pp. 12–13]). Now the same argument almost works in
the setting of manifolds with boundary: one just starts with the vector field −∇φ.
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Fig. 2. Modifying −∇f to obtain the vector field X.

The only subtlety lies in the fact that −∇φ, restricted to ∂M̃ , is not tangential
to ∂M̃ , i.e. fails property (3) in our Claim. But this is easy to remedy, since one
can use a partition of unity to smoothly transition from −∇φ away from ∂M̃ to
−∇(∂f) along the submanifold ∂M̃ (an illustration of the modification is given in
Fig. 2). One can again multiply by a function vanishing outside of K, resulting
in a vector field satisfying conditions (1)–(3) of our Claim. Finally, at the cost of
renormalizing this new vector field we can ensure that the associated flow takes the
level set f−1(b) into the level f−1(a), giving us property (4).

Now that we have the vector field X , we proceed to show that the map ϕ1

defines a diffeomorphism from the stratified space M̃b to the stratified space M̃a.
From the existence and uniqueness of solutions to ODEs, we know that the map ϕ1

is injective. Since solutions depend smoothly on the initial conditions, the map ϕ1

is also smooth, and by reversing the flow, has smooth inverse. From compactness
of M̃b (recall that f is proper), we have that φ1 is a diffeomorphism onto its image.
So we are left with arguing that ϕ1(M̃b) = M̃a.

First we argue that ϕ1(M̃b) ⊂ M̃a. Property (2) of the vector field X ensures
that f is strictly decreasing along flow lines, so that we clearly have ϕ1(M̃a) ⊂ M̃a.
For points x ∈ M̃b − M̃a, we note that property (3) ensures that x lies on the flow
line of a well-defined p ∈ f−1(b), i.e. there exists a 0 ≤ t < 1 with ϕt(p) = x. Since
ϕ1(p) ∈ M̃a, and f is strictly decreasing along flow lines, we get that

f(ϕ1(x)) = f(ϕ1+t(p)) ≤ f(ϕ1(p)) = a⇒ ϕ1(x) ∈ M̃a.

This gives the desired containment ϕ1(M̃b) ⊂ M̃a. For later use, we also point out
that the argument above establishes that f−1[a, b] is diffeomorphic, as a stratified
manifold with corners, to the manifold f−1(b) × [0, 1] (where the codimension one
strata is given by ∂(f−1(b)) × [0, 1]).

Next, to see that ϕ1(M̃b) = M̃a, we need to argue surjectivity of the map
ϕ1 : M̃b → M̃a. This is achieved as follows: forgetting the stratification and the
corner structure, we can view M̃b, M̃a as a pair of oriented manifolds with boundary.
We first argue that ϕ1 restricts to a homeomorphism between the boundaries. As we
discussed earlier, there are natural decompositions: M̃b = (∂f)−1(−∞, b] ∪ f−1(b),
and M̃a = (∂f)−1(−∞, a] ∪ f−1(a). By construction, we see that ϕ1, restricted
to ∂M̃ , coincides with the diffeomorphism from the classical Morse setting (see
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[14, pp. 12–13]) from (∂f)−1(−∞, b] to (∂f)−1(−∞, a]. Property (4) of the vector
field X tells us that ϕ1 maps the manifold with boundary f−1(b) into f−1(a). These
are manifolds with boundary, and ϕ1 restricts to a diffeomorphism between their
boundaries (as these coincide with (∂f)−1(b), (∂f)−1(a) respectively). A degree
argument now tells us that ϕ1 maps f−1(b) onto f−1(a). This now tells us that
ϕ1 restricts to a homeomorphism from ∂M̃b to ∂M̃a, and again, a degree argument
allows us to conclude that ϕ1 is surjective. The fact that ϕ1 is strata preserving
follows immediately from property (3) of the vector fieldX . We furthermore observe
that the collection of maps ϕt, 0 ≤ t ≤ 1, define a smooth, strata preserving,
deformation retraction from M̃b to M̃a. This concludes the sketch of our proof of
Claim 4.

Our next goal is to relate the diffeomorphism type of M̃v+ε with that of M̃v−ε,
when the interval [v−ε, v+ε] contains the single critical value v. This is the content
of our:

Claim 5. If v is the only critical value in the interval [v − ε, v + ε], with a
unique corresponding critical point x lying on ∂M̃, then M̃v+ε is diffeomorphic
to the stratified manifold with corners obtained from M̃v−ε by attaching the strat-
ified manifold with corners [0, 1] × D

n−1 along an embedding of the subspace
{1} × D

n−1 ↪→ Int(f−1(v − ε)), with the attaching corner “smoothed out”. The
codimension one strata of [0, 1] × D

n−1 consists of the set {0} × D
n−1.

Proof. (Claim 5) We now sketch out how this result can be deduced from the anal-
ogous statement in the classical form of Morse theory. Let N denote the boundary
component of M̃ containing the critical point x. Take a second copy of M̃ , which
we denote M̃ ′. Corresponding to the boundary component N , we have a boundary
component N ′ ⊂ M̃ ′. We define M̄ to be the smooth manifold obtained by gluing
together M̃ and M̃ ′, where the gluing is obtained by identifying N with N ′. Observe
that there is a natural Z2-action on M̄ , which interchanges the two copies of M̃ ; if
w ∈ M̄ , we will denote by w′ ∈ M̄ the image of w under the canonical involution.
We can now define a natural Z2-invariant function f ∪ f ′ on M̄ , defined by:

(f ∪ f ′)(w) =

{
f(w) w ∈ M̃,

f(w′) w ∈ M̃ ′.

Note that the function f ∪f ′ is smooth on the complement of N ⊂ M̄ . We can now
equivariantly smooth f ∪ f ′ in an arbitrarily small neighborhood of N , resulting in
a Z2-equivariant, smooth function f̄ : M̄ → R. This smoothing can also be chosen
so as to not introduce any new critical points in the subset M̃ ⊂ M̄ (and hence, by
equivariance, inside M̃ ′ ⊂ M̄). We now have the following three observations:

• the sublevel set M̄v−ε := f̄−1(−∞, v− ε] is diffeomorphic to the disjoint union of
two copies of the sublevel set M̃v−ε,
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• the sublevel set M̄v+ε := f̄−1(−∞, v + ε] is diffeomorphic to two copies of the
sublevel set M̃v+ε, with the two copies glued together along the two copies of
N ∩ M̃v+ε,

• the function f̄ contains a single critical value in the interval [v − ε, v + ε], with
the unique corresponding critical point x ∈ N ⊂ M̄ having index = 1.

The first two observations are obtained by suitably choosing the smoothing f̄ (close
enough to f ∪ f ′ and having the same critical points). The third observation can
be seen as follows: since no new critical points are introduced, we know that the
only potential critical point in the set f̄−1[v − ε, v + ε] occurs at the point x ∈
N ⊂ M̄ (which we recall was the unique critical point of f located on the boundary
componentN). On the other hand, we know that their is a change in the topology of
the sublevel sets, and hence there must exist a critical point in the set f̄−1[v−ε, v+ε]
(by Claim 4), telling us that x is indeed a critical point. Since x lies in the interior of
the manifold with boundary M̄ , we find ourselves back in the classical setting. Now
the sublevel sets for f̄ go from being disconnected (at height v−ε) to being connected
(at height v + ε), so we conclude that the critical point x must have index = 1.

Classical Morse theory tells us that there is a diffeomorphism between M̄v+ε

and the space obtained from M̄v−ε by attaching a 1-handle (see [14, pp. 14–17].
More precisely, the classical proof constructs a submanifold of M̄v+ε which is (1) a
smooth deformation retract, and (2) diffeomorphic to M̄v−ε along with a 1-handle
attached. Now from the fact that f̄ is Z2-equivariant, each sublevel set is automat-
ically Z2-invariant. But now we observe that the proof given in Milnor [14, pp. 14–
17], when applied to our equivariant function, actually guarantees Z2-equivariance
of the smooth deformation retraction, as well as Z2-invariance of the submanifold.
To achieve this, we merely need to ensure that the local coordinate chart chosen in
[14, p. 15] satisfies the obvious Z2-invariance, i.e. in terms of the local coordinates
{u1, . . . , un}, the involution takes the form u1 �→ −u1. With such a choice of local
coordinate chart, it is easy to verify that equivariance is preserved throughout the
rest of the argument.

Finally, to conclude our sketch, we note that we can recover M̃v+ε from M̄v+ε,
since the Z2-action merely interchanges the two copies of M̃v+ε inside M̄v+ε by
reflecting across the fixed set N ∩ M̄v+ε. But the sublevel set M̃v+ε can be Z2-
equivariantly smoothly retracted onto a subset diffeomorphic to two copies of M̃v−ε,
joined by a 1-handle D

1×D
n−1. Recall that in terms of the local coordinate system,

the D
1 factor corresponds to the u1-coordinate. In particular, we see that the Z2-

action on this subset interchanges the two copies of M̃v−ε, and on the 1-handle,
acts via a flip (u1 �→ −u1) on the D

1-factor. The fixed set of the involution is
thus the subset {0} × D

n−1 ⊂ D
1 × D

n−1, and the two half spaces determined by
the reflection across this fixed set are each diffeomorphic to M̃v−ε with a “half”
1-handle attached, as asserted in our Claim.

An illustration of this retraction is given in Fig. 3. The shaded region represents
the “half” 1-handle [0, 1]×D

n−1, attached to the sublevel set M̃v−ε, all lying within
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Fig. 3. Change of topology across a boundary critical point.

the ambient sublevel set M̃v+ε. The codimension one strata (corresponding to ∂M̃)
is indicated in a heavier shade. Finally, the arrows indicate the deformation retrac-
tion from the sublevel set M̃v+ε to the set M̃v−ε with the “half” 1-handle attached.

At this point, we have an efficient way to describe the diffeomorphism type of M̃
via the Morse function f . We now return to our original purpose: given two man-
ifolds M1,M2 satisfying the hypotheses of our theorem, with M̃1 having the same
number of boundary components as M̃2, we want to establish a diffeomorphism
between the universal covers.

To start out, we note that we can choose points pi ∈ M̃i so that the corre-
sponding Morse functions fi have precisely the same number of critical points (by
hypothesis, combined with Claim 3). In particular, since the set of critical values
for each of the two functions fi is a discrete subset of [0,∞) (Claim 2), one can
choose a diffeomorphism r : [0,∞) → [0,∞) with the property that x ∈ [0,∞) is
a critical value of f1 if and only if r(x) ∈ [0,∞) is a critical value of f2. We let
0 = λ0 < λ1 < λ2 < · · · be the sequence of critical values of the Morse function f1,
and let µi = (λi+λi+1)/2. We denote by (M̃1)i the stratified manifold with corners
f−1
1 [0, µi], and by (M̃2)i the stratified manifold with corners f−1

2 [0, r(µi)]. Note
that we have that the collection of codimension zero submanifolds {(M̃1)i} form an
exhaustion of M̃1, and likewise for M̃2. Our main result will now follow from:

Claim 6. For each value of i ≥ 0, there is a diffeomorphism ψi between the strati-
fied manifolds with corners (M̃1)i and (M̃2)i. Furthermore, for i ≥ 1, the diffeomor-
phism ψi can be chosen to coincide with ψi−1 on the submanifold (M̃1)i−1 ⊂ (M̃1)i.
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Proof. (Claim 6) In order to do this, we first observe that this is clearly true for
i = 0, since in this case, both (M̃1)0 = f−1

1 [0, µ0] and (M̃2)0 = f−1
2 [0, r(µ0)] are

diffeomorphic to a standard closed disk D
n (with empty codimension one strata).

Inductively, let us now assume that we have a diffeomorphism ψi : (M̃1)i → (M̃2)i,
and we would now like to extend it to a diffeomorphism ψi+1 in order to obtain a
commutative diagram:

(M̃1)i+1

ψi+1 �� (M̃2)i+1

(M̃1)i
ψi ��

��

(M̃2)i

��

where the vertical maps are the obvious inclusions. But recall that the change of
topology of sublevel sets of a Morse function as one transits through a critical
value are well understood. In our setting, since there is a unique critical value
in the interval (µi, µi+1), with a unique corresponding critical point, the mani-
fold (M̃1)i+1 = f−1

1 [0, µi+1] is diffeomorphic to (M̃1)i = f−1
1 [0, µi] with a “half

1-handle” attached (see Claim 5). Using the Morse function f2, we have that a
similar statement holds for the corresponding exhaustion of the manifold M̃2.

Concretely, we have that (M̃)i+1 = f−1
1 [0, µi+1] is diffeomorphic (see Claim 5)

to the stratified manifold with corners obtained from (M̃)i = f−1
1 [0, µi] by attaching

a copy of the stratified space [0, 1]× D
n−1 via a diffeomorphism ρ : {1} × D

n−1 →
Int(f−1

1 (µi)), and “smoothing out” the attaching map. Now note that the image of
the attaching map ρ(Dn−1) ⊂ Int(f−1

1 (µi)) is a smoothly embedded codimension
zero submanifold in the interior of the compact manifold with boundary f−1(µi).
Similarly, (M̃2)i+1 is diffeomorphic to the stratified manifold with corners obtained
from (M̃2)i by smoothly attaching [0, 1] × D

n−1 via a diffeomorphism ρ̂ : {1} ×
D
n−1 → Int(f−1

2 (r(µi))).
If the attaching map ρ̂ coincided with the composite ψi ◦ ρ, then one could

immediately extend the diffeomorphism ψi : (M̃1)i → (M̃2)i to a diffeomorphism:

ψi+1 : (M̃1)i
⋃
ρ

([0, 1] × D
n−1) → (M̃2)i

⋃
ψi◦ρ

([0, 1] × D
n−1)

by setting ψi+1
∼= ψi on (M̃1)i, setting ψi+1 to be the identity on the [0, 1]× D

n−1

term, and using the same smoothing map on both gluings. Of course, in general the
maps ρ̂ and ψi ◦ ρ define distinct smooth embeddings of D

n−1 into Int(f−1
2 (r(µi))).

We now proceed to reduce the general case to the special case where ρ̂ = ψi ◦ ρ.
In order to do this, we recall that fundamental work of Palais [16] (see also Cerf

[5, Chap. II]) implies that the two embeddings given above are smoothly isotopic (rel.
boundary), i.e. there exists a diffeomorphism H : f−1

2 (r(µi))× [0, 1] → f−1
2 (r(µi))×

[0, 1], with the property that

(1) each Ht : f−1
2 (r(µi)) × {t} → f−1

2 (r(µi)) × {t} is a diffeomorphism,
(2) H0 is the identity, and
(3) H1 ◦ ψi ◦ ρ = ρ̂.
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Choosing a real number µ′
i lying in the interval µi < µ′

i < λi+1, we have that
there are no critical values of f1 in a neighborhood of the interval [µi, µ′

i], and sim-
ilarly that f2 has no critical values in a neighborhood of the corresponding interval
[r(µi), r(µ′

i)]. In particular, from Claim 4 we see that there are diffeomorphisms
f−1
1 [µi, µ′

i] ∼= f−1
1 (µi) × [0, 1] and f−1

2 [r(µi), r(µ′
i)] ∼= f−1

2 (r(µi)) × [0, 1]. Using
this product structure, we can now extend the diffeomorphism ψi : f−1

1 (µi) →
f−1
2 (r(µi)) to a diffeomorphism ψ1 × Id : f−1

1 [µi, µ′
i] → f−1

2 [r(µi), r(µ′
i)]. Finally,

we can compose this map with the smooth isotopy H , resulting in a new diffeomor-
phism H ◦ (ψ× Id) from f−1

1 [µi, µ′
i] to f−1

2 [r(µi), r(µ′
i)]. Now observe that, since H0

is the identity, we have that this new map restricted to f−1
1 (µi) × {0} = f−1

1 (µi)
coincides with ψi, hence we can glue this map to the previously defined ψi. This
gives us a diffeomorphism ψ′ : (M̃1)′i → (M̃2)′i, where the two spaces are defined by
(M̃1)′i := f−1

1 [0, µ′
i], and (M̃2)′i := f−1

2 [0, r(µ′
i)].

Now since (M̃1)′i ∼= (M̃1)i, we can think of the space (M̃1)i+1 as being obtained
by attaching [0, 1]×D

n−1 to (M̃1)′i rather than to (M̃1)i, and likewise with (M̃2)i+1.
Furthermore, by construction we have that the diffeomorphism ψ′ : (M̃1)′i → (M̃2)′i
satisfies ρ̂ = ψ′ ◦ ρ. But this now reduces the general case to the special case we
had previously discussed. We conclude that there exists a map ψi+1 : (M̃1)i+1 →
(M̃2)i+1 having the property that ψi+1, when restricted to (M̃1)′i, coincides with
the map ψ′. In particular, the further restriction of ψi+1 to (M̃1)i ⊂ (M̃1)′i coincides
with the restriction of ψ′ to (M̃1)i, and hence is just the map ψi. This concludes
the proof of Claim 6.

Finally, we obtain a globally defined map Ψ : M̃1 → M̃2 in the obvious manner:
given x ∈ M̃1, the fact that {(M̃1)i} form an exhaustion of M̃1 guarantees that
there exists an i such that x ∈ (M̃1)i. We now define the image of x to be the point
Ψ(x) := ψi(x) ∈ (M̃2)i ⊂ M̃2. The compatibility condition on the collection of
maps {ψi} ensures that this is well defined. Furthermore, since each ψi is a diffeo-
morphism onto its image, and since {(M̃2)i} form an exhaustion of M̃2, we conclude
that the map Ψ must likewise be a diffeomorphism. Finally, by construction, it is
clear that each of the ψi preserves the induced stratification of the sublevel sets,
hence the globally defined map Ψ will also preserve the stratification. This con-
cludes the proof of the first part of Theorem 1.2, giving us a characterization of the
diffeomorphism type of the universal cover M̃ in terms of the number of components
of ∂M̃ .

Remark. At the end of the previous section, the author sketched out how one
could obtain a somewhat weaker form of this theorem. The argument, relying on
our Theorem 1.1, required the stronger hypothesis of strictly negative curvature,
as well as requiring that the dimension n ≥ 3 and n �= 5. The conclusion was the
a priori weaker statement that, if the boundary was non-empty, then the universal
covers had to be homeomorphic. We remark that, in principle, we could in fact
conclude directly from that argument that the universal covers were diffeomorphic.
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Indeed, the work of Kirby–Siebenmann (see [10]) translates the smoothing problem
in high dimensions (≥ 5) into a homotopy lifting problem. But the universal covers
M̃i are contractible, which immediately implies that the obstructions to lifting (and
hence to smoothing) vanish.

The main subtlety in this approach is that the work in [10] seems to focus
exclusively on the case of manifolds without boundary. While we certainly believe
that (analogues of) these results hold for manifolds with boundary (perhaps at
the cost of requiring dimension ≥ 6 rather than ≥ 5), we were unable to locate
a reference discussing this case. Rather than trying to extend [10] to cover the
boundary case, we chose to give the argument in the present section for three
reasons: (1) it is probably accessible to a broader audience (having some familiarity
with Morse theory), (2) it works even in dimensions ≤ 5, and (3) it gives information
in the non-positively curved setting as well.

3.2. Number of boundary components

We now have a Riemannian manifold M of non-positive curvature, and would like
to identify the number of boundary components of the universal cover M̃ . It is
clear that if M is closed, the universal cover will have no boundary component,
so let us assume that ∂M �= ∅. Let N ⊂ M be a connected component of ∂M ;
our first step will be to analyze the number of connected components in the full
lift of N to M̃ . Let Γ = π1(M), Λ = π1(N), and recall that the map induced by
inclusion Λ → Γ is an embedding (since N is totally geodesic in M , and M has
non-positive curvature). We will identify Λ with its image in Γ. Now note that the
number of connected components in the full pre-image of N in M̃ coincides with
the index [Γ : Λ] of the group Λ in the group Γ. In particular, if [Γ : Λ] = ∞,
then we immediately obtain that the number of connected components of ∂∞M̃ is
infinite. To establish our result, we first make:

Assertion 1. If [Γ : Λ] <∞, then [Γ : Λ] ≤ 2.

Proof. (Assertion 1) To see the assertion, let us assume that the full lift of N ⊂M

in the universal cover M̃ has finitely many connected components Ñ1, . . . , Ñk, with
k > 1. Without loss of generality, we may assume that the subgroup of Γ that
stabilizes Ñ1 is precisely Λ. Letting g ∈ Γ be an element satisfying gÑ1 = Ñ2, we
have that the stabilizer of Ñ2 is precisely gΛg−1. But we have that both Λ and
gΛg−1 are finite index subgroups of the group Γ, hence the intersection Λ∩ gΛg−1

has finite index in both Λ and gΛg−1. Furthermore, the intersection Λ ∩ gΛg−1

stabilizes both Ñ1 and Ñ2.
Now consider the two boundary components Ñ1, Ñ2, and observe that there

exists at least one geodesic segment γ : [0, D] → M̃ satisfying γ(0) ∈ Ñ1, γ(1) ∈ Ñ2,
and realizing the distance between Ñ1 and Ñ2. Indeed, take any curve joining Ñ1

to Ñ2, and consider the projection α to the compact manifold M . Now take a
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sequence of curves, within the homotopy class of α (rel ∂M) whose length tends to
the infimum within the homotopy class. Since M is compact, Arzela–Ascoli implies
that there is a curve realizing this minimum, and it is immediate that such a curve
is a geodesic in M . The lift will give the desired γ.

Next, observe that for all h ∈ Λ ∩ gΛg−1, we have that h · γ is also a geodesic
joining Ñ1 to Ñ2 (since Λ stabilizes both these subspaces) having the same length
as γ (since we have an isometric action). But Λ ∩ gΛg−1 acts co-compactly on
Ñ1, and hence we see that d(−, Ñ2) : Ñ1 → R

+ is a bounded function on Ñ1.
Since Ñ1 and Ñ2 are both totally geodesic in M̃ , the function d(−, Ñ2) is convex
on Ñ1, and hence must be constant. The flat strip theorem (see [3]) now implies
that M̃ is isometric to Ñ1 × [0, D], where D = d(Ñ1, Ñ2). In particular, we see
that ∂M̃ consists of precisely the disjoint union of Ñ1 and Ñ2, forcing k = 2,
as desired.

So we are now left with considering the case where [Γ : Λ] ≤ 2. We analyze
each of the two possibilities separately. Note that the argument given in the proof
of Assertion 1 immediately implies:

Assertion 1′. If [Γ : Λ] = 2, then M̃ is isometric to Ñ× [0, D] for a suitable D > 0.
In particular, M̃ has two boundary components, each of which is a connected lift
of the single boundary component of M .

Hence we are merely left with establishing:

Assertion 2. If [Γ : Λ] = 1, then M̃ is isometric to Ñ × [0, D] for a suitable
D > 0, and M itself is isometric to N × [0, D]. In particular, M̃ has two boundary
components.

Proof. (Assertion 2) In order to see this, we first note that from the compactness
of M , we have the existence of a constant K such that every point in M̃ lies at
distance ≤ K from a point on a lift of N . Furthermore, since Γ = Λ, we have that
the lift of N has a single connected component Ñ . Combining the two observations
above, we see that M̃ lies in the K-neighborhood of Ñ ⊂ M̃ .

Next we recall that since M̃ is non-positively curved, and Ñ ⊂ M̃ is totally
geodesic, there is a projection map π : M̃ → Ñ sending each point p ∈ M̃ to the
unique point π(p) ∈ Ñ which satisfies d(p, π(p)) = d(p, Ñ). Note that the pre-image
of a point q ∈ D̃M under the map π is precisely the geodesic ηq satisfying ηq(0) = q,
η̇q(0) ⊥ TqÑ . From the observation in the previous paragraph, we have that for
each q ∈ Ñ the geodesic ηq is actually a geodesic segment of length ≤ K, joining
Ñ to a unique second component Ñ ′ of ∂M̃ . Now focusing on the convexity of
the distance function from Ñ to Ñ ′ as in the previous claim, we see that M̃ splits
isometrically as a product M̃ = Ñ × [0, D], with D = d(Ñ , Ñ ′). Furthermore, since
Γ = Λ acts isometrically and stabilizes Ñ , we immediately obtain that M itself is
isometric to N × [0, D], concluding the proof of Assertion 2.
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Putting all this together, we see that the number of boundary components of
M̃ is either:

• 0: corresponding to the case where M is a closed manifold,
• 2: corresponding to the non-generic case where M̃ splits isometrically as a product

with an interval, or
• ∞: the generic case corresponding to all other M̃ .

In dimension two, these three possibilities are illustrated by taking, for instance:
a flat torus, a flat cylinder, and a torus with an open disc removed. By taking
products with S1, we obtain corresponding examples in all dimensions ≥ 2.

4. Topological Rigidity and Applications

A key aspect in the study of non-positively curved Riemannian manifolds is the
large number of rigidity theorems known to hold for these spaces. Two outstand-
ing such theorems are (1) Mostow rigidity [15], stating that in dimension ≥ 3,
homotopy equivalence of irreducible locally symmetric spaces of non-compact type
implies isometry of the spaces, and (2) Farrell–Jones topological rigidity [6], stating
that in dimension ≥ 5, homotopy equivalence of non-positively curved Riemannian
manifolds implies homeomorphism of the spaces.

A natural question is how to extend these theorems to the context of singular
spaces satisfying a metric analogue of “non-positive curvature”. In some earlier
papers ([11, 12]), the author introduced the class of hyperbolic P -manifolds, which
one can view as some of the simplest non-manifold CAT(-1) spaces, and established
Mostow rigidity within this class of spaces. In the present section, we establish
Theorem 1.3, showing topological rigidity for negatively curved P -manifolds. The
key point is that our Theorem 1.1 allows the arguments given in [12] to extend
verbatim to the present setting. For the convenience of the reader, we first review
the terminology we use, then provide a proof of the various corollaries, and finally
outline the proof of Theorem 1.1 (referring the interested reader to [12] for more
details).

4.1. Basic definitions

Let us recall the definition of a P -manifold:

Definition 4.1. A closed n-dimensional piecewise manifold (henceforth abbrevi-
ated to P -manifold) is a topological space which has a natural stratification into
pieces which are manifolds. More precisely, we define a one-dimensional P -manifold
to be a finite graph. An n-dimensional P -manifold (n ≥ 2) is defined inductively
as a closed pair Xn−1 ⊂ Xn satisfying the following conditions:

• Each connected component of Xn−1 is either an (n−1)-dimensional P -manifold,
or an (n− 1)-dimensional manifold.

• The closure of each connected component of Xn −Xn−1 is homeomorphic to a
compact orientable n-manifold with boundary, and the homeomorphism takes
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the component of Xn − Xn−1 to the interior of the n-manifold with boundary;
the closure of such a component will be called a chamber.

Denoting the closures of the connected components of Xn−Xn−1 by Wi, we observe
that we have a natural map ρ :

∐
∂Wi → Xn−1 from the disjoint union of the

boundary components of the chambers to the subspace Xn−1. We also require this
map to be surjective, and a homeomorphism when restricted to each component of∐
∂Wi. The P -manifold is said to be thick provided that each point in Xn−1 has at

least three pre-images under ρ. We will henceforth use a superscript Xn to refer to
an n-dimensional P -manifold, and will reserve the use of subscripts Xn−1, . . . , X1

to refer to the lower dimensional strata. For a thick n-dimensional P -manifold, we
will call the Xn−1 strata the branching locus of the P -manifold.

Intuitively, we can think of P -manifolds as being “built” by gluing manifolds
with boundary together along lower dimensional pieces. Examples of P -manifolds
include finite graphs and soap bubble clusters. Observe that compact manifolds
can also be viewed as (non-thick) P -manifolds. Less trivial examples can be con-
structed more or less arbitrarily by finding families of manifolds with homeomorphic
boundary and glueing them together along the boundary using arbitrary homeo-
morphisms. We now define the family of metrics we are interested in.

Definition 4.2. A Riemannian metric on a one-dimensional P -manifold (finite
graph) is merely a length function on the edge set. A Riemannian metric on an
n-dimensional P -manifold Xn is obtained by first building a Riemannian metric
on the Xn−1 subspace, then picking for each chamber Wi a Riemannian metric
with non-empty totally geodesic boundary satisfying that the gluing map ρ is an
isometry when restricted to each component of ∂Wi. We say that a Riemannian
metric on a P -manifold is negatively curved if at each step, the metric on each Wi

is negatively curved.

Observe that, at the cost of scaling the metric of the P -manifoldX by a constant,
one can assume that the metric on each Wi has sectional curvature bounded above
by −1. Such a metric on the P -manifold will automatically be locally CAT(-1), and
hence the fundamental group of a negatively curved P -manifold is a δ-hyperbolic
group. In particular, the universal cover X̃ has a well-defined boundary at infinity,
denoted ∂∞X̃.

Definition 4.3. We say that an n-dimensional P -manifold Xn is simple provided
its codimension two strata is empty. In other words, the (n− 1)-dimensional strata
Xn−1 consists of a disjoint union of (n− 1)-dimensional manifolds.

We now recall the statement of our Theorem 1.3:

Theorem 4.1. (Topological rigidity of negatively curved P -manifolds) Let X1, X2

be a pair of simple, thick, negatively curved P -manifolds, of dimension ≥ 6. If
π1(X1) is isomorphic to π1(X2), then X1 is homeomorphic to X2.
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We note that, corresponding to the stratification of a negatively curved P -
manifold, there is a natural diagram of groups having the property that the direct
limit of the diagram is precisely the fundamental group of the P -manifold (by the
generalized Seifert–Van Kampen theorem).

Remark. We note that topological rigidity fails (trivially) in dimension n = 1.
In dimension n = 2, topological rigidity was proved in [13]. In dimension n = 3,
the argument given in the present paper could be extended, provided one had
an analogue of Farrell–Jones [6] for three-dimensional manifolds. This analogue
is a well-known consequence of Thurston’s hyperbolization conjecture. A proof of
the hyperbolization conjecture is expected to follow from G. Perelman’s work on
the Ricci flow method. In dimension n = 4, topological rigidity for negatively
curved P -manifolds reduces to topological rigidity for negatively curved 4-manifolds
with totally geodesic boundary. In dimension n = 5, we are additionally lacking a
characterization of the boundary at infinity, due to the dimension hypothesis in
Cannon’s characterization of Sierpinski curves [4].

4.2. Consequences of topological rigidity

Assuming for the time being our Theorem 1.3, let us first establish Corollaries 1.1
to 1.3. For the convenience of the reader, we restate each corollary before explaining
it’s proof.

Corollary 4.1. (Diagram rigidity) Let D1,D2 be a pair of diagrams of groups,
corresponding to a pair of negatively curved, simple, thick P -manifolds of dimension
n ≥ 6. Then lim−→D1 is isomorphic to lim−→D2 if and only if the two diagrams are
isomorphic.

Proof. To obtain Corollary 1.1, we merely note that the generalized Seifert–Van
Kampen theorem implies that both π1(Xi) can be expressed as the direct limit of
a diagram of groups, with vertex groups given by the fundamental groups of the
chambers (and of the components of the branching locus), and edge morphisms
induced by the inclusion of the components of the branching locus into the incident
chambers. Now an abstract isomorphism between the direct limits corresponds to
an isomorphism from π1(X1) to π1(X2). From Theorem 1.3, this isomorphism is
induced by a homeomorphism from X1 to X2, and hence must take chambers to
chambers and components of the branching locus to components of the branching
locus. This implies the existence of isomorphism between the groups attached to
the vertices in the diagram for π1(X1) to the groups attached to the corresponding
vertices in the diagram for π1(X2). Furthermore, these isomorphisms commute (up
to inner automorphisms, due to choice of base points) with the corresponding edge
morphisms. But this is precisely the definition of diagram rigidity. This concludes
the sketch of Corollary 1.1.

Corollary 4.2. (Weak Co-Hopf property) Let X be a simple, thick, negatively
curved P -manifold of dimension n ≥ 6, and assume that at least one of the chambers
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has a nonzero characteristic number. Then Γ = π1(X) is weakly co-Hopfian, i.e.
every injection Γ ↪→ Γ with image of finite index is in fact an isomorphism.

Proof. Since the space X is a K(Γ, 1), any injection i : Γ ↪→ Γ with image of finite
index yields a finite cover î : X̄ → X with π1(X̄) ∼= Γ, and î∗(π1(X̄)) = i(Γ). Now
Theorem 1.3 implies that X̄ is homeomorphic to X , so this yields a covering map
î : X → X , whose degree coincides with the index of the group i(Γ) in Γ. Hence
it is sufficient to show that this covering has degree one. But we know that X
contains a chamber with a nonzero characteristic number. Since there are finitely
many chambers, consider the finitely many chambers W1, . . . ,Wk for which this
characteristic number has the largest possible magnitude |r| �= 0. Then we know
that under a covering of degree d, characteristic numbers scale by the degree, so we
conclude that the full pre-image î−1(Wi) of each Wi has characteristic number of
magnitude d · |r|. By maximality of |r|, we conclude that each connected component
of î−1(Wi) must also have characteristic number equal to |r|, and hence must be
one of the chambers W1, . . . ,Wk. In particular, the pre-image î−1(Wi) of each Wi

in the list Wi, . . . ,Wk consists of d distinct chambers in the list W1, . . . ,Wk. Since
the list is finite, this forces d = 1, as desired.

Corollary 4.3. (Nielson realization problem) Let X be a simple, thick, negatively
curved P -manifold of dimension n ≥ 6, and Γ = π1(X). Then the canonical map
Homeo(X) → Out(Γ) is surjective.

Proof. Take any element α ∈ Out(Γ). Then there exists an element ᾱ ∈ Aut(Γ)
which projects to α under the canonical map Aut(Γ) � Out(Γ). From Theorem 1.3,
we have a self-homeomorphism φ ∈ Homeo(X) with the property that φ∗ = α,
concluding the proof of Corollary 1.3.

Remark. Concerning the hypothesis in Corollary 4.2 on the existence of a nonzero
characteristic number for one of the chambers, we point out that the famous Hopf
Conjecture on the sign of the Euler characteristic asserts that for a closed, negatively
curved, even dimensional manifold M2n, we have the inequality (−1)nχ(M2n) > 0.
It is easy to see (using a doubling argument) that the Hopf conjecture, if true,
implies that for any compact negatively curved manifold M with non-empty totally
geodesic boundary, we have χ(M) �= 0. In particular, the validity of the Hopf conjec-
ture would yield the desired nonzero characteristic number. We also point out that
a much stronger result is known, namely Sela [18] has shown that a non-elementary
δ-hyperbolic group is co-Hopfian if and only if if is freely indecomposable.

4.3. Proof of topological rigidity

Let us now sketch out the proof of Theorem 1.3 from the introduction. We first
start with a definition:

Definition 4.4. Define the 1-tripod T to be the topological space obtained by
taking the join of a one-point set with a three-point set. Denote by ∗ the point in T
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corresponding to the one-point set. We define the n-tripod (n ≥ 2) to be the space
T ×D

n−1, and call the subset ∗×D
n−1 the spine of the tripod T ×D

n−1. The subset
∗×D

n−1 separates T ×D
n−1 into three open sets, which we call the open leaves of

the tripod. The union of an open leaf with the spine will be called a closed leaf of
the tripod. We say that a point p in a topological space X is n-branching provided
there is a topological embedding f : T × D

n−1 → X such that p ∈ f(∗ × D
n−1
◦ ).

It is clear that the property of being n-branching is invariant under homeo-
morphisms. Note that, in a simple, thick P -manifold of dimension n, points in the
codimension one strata are automatically n-branching. One can ask whether this
property can be detected at the level of the boundary at infinity. This is the content
of the following:

Proposition 4.1. (Characterization of branching points) Let X be an n-
dimensional, simple, thick, negatively curved P -manifold, and p ∈ ∂∞X̃. Then p is
(n− 1)-branching if and only if there exists a geodesic ray γ, entirely contained in
the lift of the branching locus, and satisfying γ(∞) = p.

Proof. First observe that if p ∈ ∂∞X̃ coincides with γ(∞), for some γ entirely
contained in a connected component B of the lift of the branching locus, then
from the thickness hypothesis, there exist ≥ 3 lifts of chambers that contain γ

in their common intersection B. Focusing on three such lifts of chambers, call
them Y1, Y

′
1 , Y

′′
1 , we can successively extend each of these in the following man-

ner: form subspaces Yi+1, Y
′
i+1, Y

′′
i+1 from the subspaces Yi, Y ′

i , Y
′′
i by choosing, for

each boundary component of Yi, Y ′
i , Y

′′
i distinct from B, an incident lift of a cham-

ber (note that each boundary component is a connected component of the lift
of the branching locus). Finally, set Y∞ := ∪iYi, and similarly for Y ′

∞, Y
′′
∞. Now

observe that, by construction, the three subsets Y∞, Y ′
∞, Y

′′
∞ have the following

properties:

• they are totally geodesic subsets of X̃ ,
• their pairwise intersection is precisely B, their (common, totally geodesic) bound-

ary component,
• doubling them across their boundary B results in a simply connected, negatively

curved, complete Riemannian manifold.

The first property ensures that the boundary at infinity of the space Y∞∪Y ′
∞∪Y ′′

∞
embeds in ∂∞X̃. The third property ensures that ∂∞Y∞ ∼= ∂∞Y ′

∞ ∼= ∂∞Y ′′
∞ ∼=

D
n−1. The second property ensures that Sn−2 ∼= ∂∞B ⊂ ∂∞X̃ coincides with the

boundary of the three embedded D
n−1. Since p ∈ ∂∞B, this immediately implies

that p is (n− 1)-branching, yielding one of the two desired implications.
Conversely, assume that p ∈ X̃ is not of the form γ(∞), where γ is contained

entirely in a connected component of the lift of the branching locus. Consider a
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geodesic ray γ satisfying γ(∞) = p, and note that there are two possibilities:

• there exists a connected lift W of a chamber with the property that γ eventually
lies in the interior of W , and is not asymptotic to any boundary component of
W , or

• γ intersects infinitely many connected lifts of chambers.

In both these cases, we would like to argue that p cannot be (n− 1)-branching.
Let us consider the first of these two cases, and assume that there exists an

embedding f : T ×D
n−2 → ∂∞X̃ satisfying p ∈ f({∗}×D

n−2
◦ ). Picking a point x in

the interior ofW , one can consider the composition πx◦f : T×D
n−2 → lkx ∼= Sn−1,

where lkx denotes a small enough ε-sphere centered at the point x, and the map πx
is induced by geodesic retraction. Note that the map πx is not injective: the points
in lkx where πx is injective coincides with πx(∂∞W ) (i.e. for every q ∈ ∂∞W ,
we have π−1

x (πxq) = {q}, and the latter are the only points in ∂∞X̃ with this
property). Note that, from Theorem 1.1, along with part (2) of Cannon’s theorem
(see Theorem 2.1), this subset of injective points I ⊂ lkx is an (n− 2)-dimensional
Sierpinski curve. Furthermore, the hypothesis on the point p ensures that πxp does
not lie on one of the boundary spheres of the (n− 2)-dimensional Sierpinski curve
I. But now in [12, Sec. 3.1] the following result was established:

Theorem. Let F : T × D
n−2 → Sn−1 be a continuous map, and assume that the

sphere Sn−1 contains an (n − 2)-dimensional Sierpinski curve I. Let {Ui} be the
collection of embedded open (n−1)-cells whose complement yield I, and let Inj(F ) ⊂
Sn−1 denote the subset of points in the target where the map F is injective. Then
F ({∗} × D

n−2
◦ ) ∩ [I − ∪i(∂Ui)] �= ∅, implies that [∪i(∂Ui)] − Inj(F ) �= ∅. In other

words, this forces the existence of a point in some ∂Ui which has at least two pre-
images under F .

Actually, in [12] this theorem was proved using purely topological arguments
under some further hypotheses on the open cells Ui. But parts (1) and (3) of Can-
non’s Theorem allows the exact same proof to apply in the more general setting,
just by composing with a homeomorphism taking the arbitrary Sierpinski curve to
the one used in the proof in [12].

To conclude, we apply the theorem above to the composite map F := πx ◦ f :
T × D

n−2 → lkx. The point f−1(p) ∈ {∗} × D
n−2
◦ has image lying in I − ∪i(∂Ui),

which tells us that F ({∗} × D
n−2
◦ ) ∩ [I − ∪i(∂Ui)] �= ∅. The theorem implies that

there exists a point q in some ∂Ui ⊂ I which has at least two pre-images under the
composite map F = πx ◦ f . Since the map πx is actually injective on the set I, this
implies that the map f had to have two pre-images at the point π−1

x (q) ∈ ∂∞X̃,
contradicting the fact that f was an embedding. This resolves the first of the two
possible cases.

For the second of the two cases (where the geodesic ray γ passes through
infinitely many lifts of chambers), a simple separation argument (see Secs. 3.2,
3.3 in [12]) shows that if there exists a branching point of the second type, there
must also exist a branching point of the first type. But we saw above that there
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cannot exist any branching points of the first type. This concludes the proof of
Proposition 3.1.

Now given the characterization of branching points, let us see how to show The-
orem 1.3. So assume that we are given a pair X1, X2 of simple, thick, negatively
curved P -manifolds of dimension n ≥ 6, and that we are told that π1(X1) ∼= π1(X2).
This immediately implies that X̃1 is quasi-isometric to X̃2, and hence that ∂∞X̃1

is homeomorphic to ∂∞X̃2. Let Bi denote the union, in each respective ∂∞X̃i, of
the boundaries at infinity of the individual connected components of the lift of the
branching locus. Note that each Bi is a union of countably many, pairwise disjoint,
embedded Sn−2 inside ∂∞X̃i (each Sn−2 arising as the boundary at infinity of a
single connected component of the lift of the branching locus). Now the characteriza-
tion of branching points in Proposition 4.1 implies that, under the homeomorphism
between ∂∞X̃1 and ∂∞X̃2, we have that B1 must map homeomorphically to B2.

In particular, connected components of B1 must map homeomorphically to con-
nected components of B2. A result of Sierpinski [19] implies that the connected
components in each case are precisely the individual Sn−2 in the countable union.
This yields a bijection between connected components of the lift of the branching
locus in the respective X̃i. Furthermore, the homeomorphism must restrict to a
homeomorphism between the complements of the Bi in the respective ∂∞X̃i. The
connected components of this complement are either:

• isolated points, corresponding to γ(∞), where γ is a geodesic ray passing through
infinitely many connected lifts of chambers, and

• components with ≥ 2 points, which are in bijective correspondence with con-
nected lifts of chambers in the respective X̃i (see [12, Sec. 3.2]).

This yields a bijective correspondence between lifts of chambers in X̃1 and lifts
of chambers in X̃2. Furthermore, the closure of the components containing ≥ 2
points correspond canonically with ∂∞Wi, where Wi is the bijectively associated
connected lift of a chamber.

Now recall that the homeomorphisms between ∂∞X̃1 and ∂∞X̃2 has the addi-
tional property that it is equivariant with respect to the respective π1(Xi) actions
on the ∂∞X̃i. We also have the following Lemma relating the action on ∂∞X̃ with
the action on X̃ (the argument is identical to that given in [11, p. 212]):

Lemma 4.1. Let Bi be a connected component of the lift of the branching locus in
X̃, and let Wi be a connected lift of a chamber in X̃. Then we have:

• Stabπ1(X)(Bi) = Stabπ1(X)(∂∞Bi), and
• Stabπ1(X)(Wi) = Stabπ1(X)(∂∞Wi),

where the action on the left-hand side is the obvious action of π1(X) on X̃ by
deck transformations, and the action on the right-hand side is the induced action
of π1(X) on ∂∞X̃.
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Observe that equivariance of the homeomorphism implies that the bijective cor-
respondence between connected lifts of chambers descends to a bijective correspon-
dence between the chambers in X1 and the chambers in X2 (since two connected
lifts of chambers cover the same chamber in Xi if and only if the two lifts have
stabilizers which are conjugate in π1(Xi)). Similarly, the bijective correspondence
between connected components of the lifts of the branching loci descends to a bijec-
tive correspondence between the connected components of the branching loci in X1

with those in X2. Furthermore, by equivariance of the homeomorphism, we have
that chambers (or connected components of the branching loci) that are bijectively
identified have isomorphic fundamental groups. Separation arguments identical to
the ones in [11, Lemmas 2.1–2.4] ensures that the bijective correspondence also
preserves the incidence relation between chambers and components of the codi-
mension one strata (and that the isomorphisms between the various fundamental
groups respect the incidence structure).

To conclude, we apply the celebrated Farrell–Jones topological rigidity theo-
rem for non-positively curved manifolds [6]. This implies that, corresponding to the
bijections between chambers (and components of the branching loci), one has home-
omorphisms between the corresponding chambers that induce the isomorphisms on
the level of the fundamental groups. Note that, a priori, the various homeomor-
phisms between chambers might not be compatible with the gluing maps. But by
construction, the attaching maps all induce the same maps on the fundamental
group π1(Bi) of each individual component Bi of the branching locus. By Farrell–
Jones, this implies that the restriction to Bi of the maps induced by the various
homeomorphisms of incident chambers are all pairwise pseudoisotopic. Hence at the
cost of deforming the homeomorphism in a collared neighborhood of the boundary
of each chamber, we may assume that the homeomorphisms respect the gluing
maps. But attaching together these individual homeomorphisms on chambers now
induces a globally defined homeomorphism fromX1 to X2. This concludes the sketch
of Theorem 1.3.
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